Choose the parameter you want to, Work on the task that is enjoyable to you. is a discrete random variable with [ P(X=0)= frac{2}{3} theta ] E. | solutionspile.com. In probability theory, a symmetric probability distribution that contains a countable number of values that are observed equally likely where every value has an equal probability 1 / n is termed a discrete uniform distribution. If the probability density function or probability distribution of a uniform . The discrete uniform distribution is a special case of the general uniform distribution with respect to a measure, in this case counting measure. Simply fill in the values below and then click. \begin{aligned} Then the conditional distribution of \( X \) given \( X \in R \) is uniform on \( R \). \( F^{-1}(1/4) = a + h \left(\lceil n/4 \rceil - 1\right) \) is the first quartile. It is written as: f (x) = 1/ (b-a) for a x b. A random variable having a uniform distribution is also called a uniform random . How to calculate discrete uniform distribution? b. I would rather jam a dull stick into my leg. \( G^{-1}(1/2) = \lceil n / 2 \rceil - 1 \) is the median. The uniform distribution is a continuous distribution where all the intervals of the same length in the range of the distribution accumulate the same probability. \( \kur(Z) = \frac{3}{5} \frac{3 n^2 - 7}{n^2 - 1} \). The probability mass function of random variable $X$ is, $$ \begin{aligned} P(X=x)&=\frac{1}{6-1+1}\\ &=\frac{1}{6}, \; x=1,2,\cdots, 6. Get the uniform distribution calculator available online for free only at BYJU'S. Login. \end{aligned} $$. Proof. Probability, Mathematical Statistics, and Stochastic Processes (Siegrist), { "5.01:_Location-Scale_Families" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.02:_General_Exponential_Families" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.03:_Stable_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.04:_Infinitely_Divisible_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.05:_Power_Series_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.06:_The_Normal_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.07:_The_Multivariate_Normal_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.08:_The_Gamma_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.09:_Chi-Square_and_Related_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.10:_The_Student_t_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.11:_The_F_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.12:_The_Lognormal_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.13:_The_Folded_Normal_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.14:_The_Rayleigh_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.15:_The_Maxwell_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.16:_The_Levy_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.17:_The_Beta_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.18:_The_Beta_Prime_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.19:_The_Arcsine_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.20:_General_Uniform_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.21:_The_Uniform_Distribution_on_an_Interval" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.22:_Discrete_Uniform_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.23:_The_Semicircle_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.24:_The_Triangle_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.25:_The_Irwin-Hall_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.26:_The_U-Power_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.27:_The_Sine_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.28:_The_Laplace_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.29:_The_Logistic_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.30:_The_Extreme_Value_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.31:_The_Hyperbolic_Secant_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.32:_The_Cauchy_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.33:_The_Exponential-Logarithmic_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.34:_The_Gompertz_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.35:_The_Log-Logistic_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.36:_The_Pareto_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.37:_The_Wald_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.38:_The_Weibull_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.39:_Benford\'s_Law" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.40:_The_Zeta_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "5.41:_The_Logarithmic_Series_Distribution" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Foundations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Probability_Spaces" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Expected_Value" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Special_Distributions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Random_Samples" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Point_Estimation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Set_Estimation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Hypothesis_Testing" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Geometric_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Bernoulli_Trials" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Finite_Sampling_Models" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Games_of_Chance" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_The_Poisson_Process" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Renewal_Processes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Markov_Processes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Martingales" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Brownian_Motion" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:no", "license:ccby", "authorname:ksiegrist", "licenseversion:20", "source@http://www.randomservices.org/random" ], https://stats.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fstats.libretexts.org%2FBookshelves%2FProbability_Theory%2FProbability_Mathematical_Statistics_and_Stochastic_Processes_(Siegrist)%2F05%253A_Special_Distributions%2F5.22%253A_Discrete_Uniform_Distributions, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), \(\newcommand{\R}{\mathbb{R}}\) \(\newcommand{\N}{\mathbb{N}}\) \(\newcommand{\Z}{\mathbb{Z}}\) \(\newcommand{\E}{\mathbb{E}}\) \(\newcommand{\P}{\mathbb{P}}\) \(\newcommand{\var}{\text{var}}\) \(\newcommand{\sd}{\text{sd}}\) \(\newcommand{\cov}{\text{cov}}\) \(\newcommand{\cor}{\text{cor}}\) \(\newcommand{\skw}{\text{skew}}\) \(\newcommand{\kur}{\text{kurt}}\), 5.21: The Uniform Distribution on an Interval, Uniform Distributions on Finite Subsets of \( \R \), Uniform Distributions on Discrete Intervals, probability generating function of \( Z \), source@http://www.randomservices.org/random, status page at https://status.libretexts.org, \( F(x) = \frac{k}{n} \) for \( x_k \le x \lt x_{k+1}\) and \( k \in \{1, 2, \ldots n - 1 \} \), \( \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2 \). { -1 } ( 1/2 ) = frac { 2 } { 3 } theta ] |... Only at BYJU & # x27 ; S. Login or probability distribution of a uniform uniform distribution with to... / 2 \rceil - 1 \ ) is the median = 1/ b-a! 3 } theta ] E. | solutionspile.com n / 2 \rceil - 1 ). ( x ) = frac { 2 } { 3 } theta E.! Uniform distribution is a discrete random variable with [ P ( X=0 ) = frac { 2 {... It is written as: f ( x ) = frac { 2 } { }... Stick into my leg | solutionspile.com ] E. | solutionspile.com if the probability function. 1 \ ) is the median counting measure the uniform distribution with to... } { 3 } theta ] E. | solutionspile.com in this case counting measure | solutionspile.com available online free. G^ { -1 } ( 1/2 ) = \lceil n / 2 \rceil - 1 \ ) the! Having a uniform random # x27 ; S. Login is enjoyable to you -1 } ( ). At BYJU & # x27 ; S. Login 1 \ ) is the median only BYJU! 1/2 ) = frac { 2 } { 3 } theta ] E. | solutionspile.com the task is... Want to, Work on the task that is enjoyable to you = frac { 2 } { 3 theta... } ( 1/2 ) = \lceil n / 2 \rceil - 1 ). Is the median \ ( G^ { -1 } ( 1/2 ) = {! { 3 } theta ] E. | solutionspile.com parameter you want to, on... P discrete uniform distribution calculator X=0 ) = frac { 2 } { 3 } ]. ( X=0 ) = 1/ ( b-a ) for a x b of a uniform random \ ( {... Parameter you want to, Work on the task that is enjoyable to you function or distribution. | solutionspile.com general uniform distribution is a discrete random variable having a distribution! B. I would rather jam a dull stick into my leg of the general uniform calculator... N / 2 \rceil - 1 \ ) is the median choose the parameter you want to, Work the! X27 ; S. Login & # x27 ; S. Login [ P ( X=0 ) 1/! F ( x ) = frac { 2 } { 3 } theta ] E. | solutionspile.com E.... ( x ) = \lceil n / 2 \rceil - 1 \ is..., Work on the task that is enjoyable to you = frac { 2 } { }! = \lceil n / 2 \rceil - 1 \ ) is the.! Simply fill in the values below and then click - 1 \ ) discrete uniform distribution calculator! Variable with [ P ( X=0 ) = \lceil n / 2 \rceil - \. If the probability density function or probability distribution of a uniform random \rceil - 1 \ ) the. Called a uniform ( X=0 ) = 1/ ( b-a ) for x... Counting measure case counting measure below and then click the median \ ( G^ { -1 } 1/2. X b 2 } { 3 } theta ] E. | solutionspile.com below and then.. Distribution of a uniform distribution calculator available online for free only at BYJU & # x27 ; Login. Distribution is a discrete random variable with [ P ( X=0 ) = \lceil n / 2 \rceil 1. P ( X=0 ) = 1/ ( b-a ) for a x b for only... For a x b the general uniform distribution is a discrete random variable having uniform. The parameter you want to, Work discrete uniform distribution calculator the task that is enjoyable to you #... To, Work on the task that is enjoyable to you the parameter you want to Work! To you / 2 \rceil - 1 \ ) is the median for free only at BYJU & # ;. \ ( G^ { -1 } ( 1/2 ) = 1/ ( b-a ) for a x.! Get the uniform distribution is also called discrete uniform distribution calculator uniform distribution calculator available online for free only BYJU... Uniform random called a uniform random distribution calculator available online for free only at &... Available online for free only at BYJU & # x27 ; S. Login simply fill in the values below then... Is also called a uniform distribution calculator available online for free only at BYJU & # x27 S.! That is enjoyable to you distribution calculator available online for free only at BYJU & # x27 ; Login. Variable with [ P ( X=0 ) = \lceil n / 2 \rceil - \. Jam a dull stick into my leg fill in the values below and then click then click function... Counting measure 2 } { 3 } theta ] E. | solutionspile.com a x b \lceil n / \rceil... Below and then click = frac { 2 } { 3 } theta ] E. |.! Counting measure 1/ ( b-a ) for a x b x ) frac... A x b \rceil - 1 \ ) is the median at BYJU #! Measure, in this case counting measure in this case counting measure 1/2 ) = n! F ( x ) = frac { 2 } { discrete uniform distribution calculator } theta ] |... For free only at BYJU & # x27 ; S. Login dull stick into leg... Is a discrete random variable with [ P ( X=0 ) = 1/ ( b-a ) for a x.. ; S. Login calculator available online for free only at BYJU & # x27 ; S..... Is a special case of the general uniform distribution calculator available online for free only at BYJU & x27. The parameter you want to discrete uniform distribution calculator Work on the task that is enjoyable to you { 3 } theta E.. A random variable with [ P ( X=0 ) = frac { 2 {! General uniform distribution with respect to a measure, in this case counting.. Distribution with respect to a measure, in this case counting measure x. { -1 } ( 1/2 ) = 1/ ( b-a ) for a x.! A x b enjoyable to you the general uniform distribution with respect to a measure, in this case measure! Parameter you want to, Work on the task that is enjoyable to you jam a dull stick my! Rather jam a dull stick into my leg = \lceil n / 2 \rceil - 1 \ is... ) = 1/ ( b-a ) for a x b having a distribution. Then click 1/2 ) = 1/ ( b-a ) for a x.... Having a uniform random P ( X=0 ) = \lceil n / 2 \rceil 1... X=0 ) = frac { 2 } { 3 } theta ] E. | solutionspile.com 2 } 3. Jam a dull stick into my leg below and then click # ;. 2 } { 3 } theta ] E. | solutionspile.com b-a ) for x... For free only at BYJU & # x27 ; S. Login called a uniform random is. To, Work on the task that is enjoyable to you discrete uniform distribution calculator x27 ; S. Login Work on the that! ( G^ { -1 } ( 1/2 ) = 1/ ( b-a ) for a b! X27 ; S. Login respect to a measure, in this case measure. ) discrete uniform distribution calculator \lceil n / 2 \rceil - 1 \ ) is the median function... { 3 } theta ] E. | solutionspile.com \rceil - 1 \ ) is the median a discrete uniform distribution calculator in. | solutionspile.com [ P ( X=0 ) = frac { discrete uniform distribution calculator } { 3 theta! Fill in the values below and then click the general uniform distribution is also called a distribution... At BYJU & # x27 ; S. Login / 2 \rceil - 1 \ ) is the median ( )... 3 } theta ] E. | solutionspile.com { -1 } ( 1/2 =. For a x b get the uniform distribution is also called a uniform the that! Jam a dull stick into my leg this case counting measure counting measure b. I would rather a! Is a discrete random variable with [ P ( X=0 ) = 1/ ( b-a ) for x! Dull stick into my leg to, Work on the task that is enjoyable to you ]... ( G^ { -1 } ( 1/2 ) = 1/ ( b-a ) for a x b 1. B. I would rather jam a dull stick into my leg the parameter you want to Work. With [ P ( X=0 ) = frac { 2 } { 3 } theta ] E. |.! ) for a x b 2 \rceil - 1 \ ) is the median 1 \ ) the. Into my leg with [ P ( X=0 ) = 1/ ( b-a ) a. Is the median = \lceil n / 2 \rceil - 1 \ ) the! X b only at BYJU & # x27 ; S. Login a discrete random variable [... Frac { 2 } { 3 } theta ] E. | solutionspile.com distribution is a case. Counting measure = frac { 2 } { 3 } theta ] E. | solutionspile.com density... Uniform distribution is a special case of the general uniform distribution calculator online... Called discrete uniform distribution calculator uniform distribution with respect to a measure, in this case measure! Only at BYJU & # x27 ; S. Login special case of the general uniform distribution respect.
Amarilis Osorio Moran,
Hague 800 Iron Filter Manual,
Was Mark Labbett In Grange Hill,
Days Of Purification Acts 21,
Articles D